77 research outputs found

    Obesity, chronic disease, age, and in-hospital mortality in patients with covid-19: analysis of ISARIC clinical characterisation protocol UK cohort.

    Get PDF
    BACKGROUND: Although age, obesity and pre-existing chronic diseases are established risk factors for COVID-19 outcomes, their interactions have not been well researched. METHODS: We used data from the Clinical Characterisation Protocol UK (CCP-UK) for Severe Emerging Infection developed by the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC). Patients admitted to hospital with COVID-19 from 6th February to 12th October 2020 were included where there was a coded outcome following hospital admission. Obesity was determined by an assessment from a clinician and chronic disease by medical records. Chronic diseases included: chronic cardiac disease, hypertension, chronic kidney disease, chronic pulmonary disease, diabetes and cancer. Mutually exclusive categories of obesity, with or without chronic disease, were created. Associations with in-hospital mortality were examined across sex and age categories. RESULTS: The analysis included 27,624 women with 6407 (23.2%) in-hospital deaths and 35,065 men with 10,001 (28.5%) in-hospital deaths. The prevalence of chronic disease in women and men was 66.3 and 68.5%, respectively, while that of obesity was 12.9 and 11.1%, respectively. Association of obesity and chronic disease status varied by age (p < 0.001). Under 50 years of age, obesity and chronic disease were associated with in-hospital mortality within 28 days of admission in a dose-response manner, such that patients with both obesity and chronic disease had the highest risk with a hazard ratio (HR) of in-hospital mortality of 2.99 (95% CI: 2.12, 4.21) in men and 2.16 (1.42, 3.26) in women compared to patients without obesity or chronic disease. Between the ages of 50-69 years, obesity and chronic disease remained associated with in-hospital COVID-19 mortality, but survival in those with obesity was similar to those with and without prevalent chronic disease. Beyond the age of 70 years in men and 80 years in women there was no meaningful difference between those with and without obesity and/or chronic disease. CONCLUSION: Obesity and chronic disease are important risk factors for in-hospital mortality in younger age groups, with the combination of chronic disease and obesity being particularly important in those under 50 years of age. These findings have implications for targeted public health interventions, vaccination strategies and in-hospital clinical decision making

    Obesity, Ethnicity, and Risk of Critical Care, Mechanical Ventilation, and Mortality in Patients Admitted to Hospital with COVID-19: Analysis of the ISARIC CCP-UK Cohort.

    Get PDF
    OBJECTIVE: The aim of this study was to investigate the association of obesity with in-hospital coronavirus disease 2019 (COVID-19) outcomes in different ethnic groups. METHODS: Patients admitted to hospital with COVID-19 in the United Kingdom through the Clinical Characterisation Protocol UK (CCP-UK) developed by the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) were included from February 6 to October 12, 2020. Ethnicity was classified as White, South Asian, Black, and other minority ethnic groups. Outcomes were admission to critical care, mechanical ventilation, and in-hospital mortality, adjusted for age, sex, and chronic diseases. RESULTS: Of the participants included, 54,254 (age = 76 years; 45.0% women) were White, 3,728 (57 years; 41.1% women) were South Asian, 2,523 (58 years; 44.9% women) were Black, and 5,427 (61 years; 40.8% women) were other ethnicities. Obesity was associated with all outcomes in all ethnic groups, with associations strongest for black ethnicities. When stratified by ethnicity and obesity status, the odds ratios for admission to critical care, mechanical ventilation, and mortality in black ethnicities with obesity were 3.91 (3.13-4.88), 5.03 (3.94-6.63), and 1.93 (1.49-2.51), respectively, compared with White ethnicities without obesity. CONCLUSIONS: Obesity was associated with an elevated risk of in-hospital COVID-19 outcomes in all ethnic groups, with associations strongest in Black ethnicities

    Admission Blood Glucose Level and Its Association With Cardiovascular and Renal Complications in Patients Hospitalized With COVID-19

    Get PDF
    OBJECTIVE: To investigate the association between admission blood glucose levels and risk of in-hospital cardiovascular and renal complications. RESEARCH DESIGN AND METHODS: In this multicenter prospective study of 36,269 adults hospitalized with COVID-19 between 6 February 2020 and 16 March 2021 (N = 143,266), logistic regression models were used to explore associations between admission glucose level (mmol/L and mg/dL) and odds of in-hospital complications, including heart failure, arrhythmia, cardiac ischemia, cardiac arrest, coagulation complications, stroke, and renal injury. Nonlinearity was investigated using restricted cubic splines. Interaction models explored whether associations between glucose levels and complications were modified by clinically relevant factors. RESULTS: Cardiovascular and renal complications occurred in 10,421 (28.7%) patients; median admission glucose level was 6.7 mmol/L (interquartile range 5.8-8.7) (120.6 mg/dL [104.4-156.6]). While accounting for confounders, for all complications except cardiac ischemia and stroke, there was a nonlinear association between glucose and cardiovascular and renal complications. For example, odds of heart failure, arrhythmia, coagulation complications, and renal injury decreased to a nadir at 6.4 mmol/L (115 mg/dL), 4.9 mmol/L (88.2 mg/dL), 4.7 mmol/L (84.6 mg/dL), and 5.8 mmol/L (104.4 mg/dL), respectively, and increased thereafter until 26.0 mmol/L (468 mg/dL), 50.0 mmol/L (900 mg/dL), 8.5 mmol/L (153 mg/dL), and 32.4 mmol/L (583.2 mg/dL). Compared with 5 mmol/L (90 mg/dL), odds ratios at these glucose levels were 1.28 (95% CI 0.96, 1.69) for heart failure, 2.23 (1.03, 4.81) for arrhythmia, 1.59 (1.36, 1.86) for coagulation complications, and 2.42 (2.01, 2.92) for renal injury. For most complications, a modifying effect of age was observed, with higher odds of complications at higher glucose levels for patients age <69 years. Preexisting diabetes status had a similar modifying effect on odds of complications, but evidence was strongest for renal injury, cardiac ischemia, and any cardiovascular/renal complication. CONCLUSIONS: Increased odds of cardiovascular or renal complications were observed for admission glucose levels indicative of both hypo- and hyperglycemia. Admission glucose could be used as a marker for risk stratification of high-risk patients. Further research should evaluate interventions to optimize admission glucose on improving COVID-19 outcomes

    Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19

    Get PDF
    While it is now widely accepted that host inflammatory responses contribute to lung injury, the pathways that drive severity and distinguish coronavirus disease 2019 (COVID-19) from other viral lung diseases remain poorly characterized. We analyzed plasma samples from 471 hospitalized patients recruited through the prospective multicenter ISARIC4C study and 39 outpatients with mild disease, enabling extensive characterization of responses across a full spectrum of COVID-19 severity. Progressive elevation of levels of numerous inflammatory cytokines and chemokines (including IL-6, CXCL10, and GM-CSF) were associated with severity and accompanied by elevated markers of endothelial injury and thrombosis. Principal component and network analyses demonstrated central roles for IL-6 and GM-CSF in COVID-19 pathogenesis. Comparing these profiles to archived samples from patients with fatal influenza, IL-6 was equally elevated in both conditions whereas GM-CSF was prominent only in COVID-19. These findings further identify the key inflammatory, thrombotic, and vascular factors that characterize and distinguish severe and fatal COVID-19

    Enrichment of SARS-CoV-2 sequence from nasopharyngeal swabs whilst identifying the nasal microbiome

    Get PDF
    Simultaneously characterising the genomic information of coronaviruses and the underlying nasal microbiome from a single clinical sample would help characterise infection and disease. Metatranscriptomic approaches can be used to sequence SARS-CoV-2 (and other coronaviruses) and identify mRNAs associated with active transcription in the nasal microbiome. However, given the large sequence background, unenriched metatranscriptomic approaches often do not sequence SARS-CoV-2 to sufficient read and coverage depth to obtain a consensus genome, especially with moderate and low viral loads from clinical samples. In this study, various enrichment methods were assessed to detect SARS-CoV-2, identify lineages and define the nasal microbiome. The methods were underpinned by Oxford Nanopore long-read sequencing and variations of sequence independent single primer amplification (SISPA). The utility of the method(s) was also validated on samples from patients infected seasonal coronaviruses. The feasibility of profiling the nasal microbiome using these enrichment methods was explored. The findings shed light on the performance of different enrichment strategies and their applicability in characterising the composition of the nasal microbiome

    Hospital-acquired SARS-CoV-2 infection in the UK's first COVID-19 pandemic wave

    Get PDF
    Hospital-based transmission played a dominant role in MERS-CoV and SARS-CoV epidemics but large-scale studies of its role in the SARS-CoV-2 pandemic are lacking. Such transmission risks spreading the virus to the most vulnerable individuals and can have wider-scale impacts through hospital-community interactions. Using data from acute hospitals in England we quantify within-hospital transmission, evaluate likely pathways of spread and factors associated with heightened transmission risk, and explore the wider dynamical consequences. We estimate that between June 2020 and March 2021 between 95,000 and 167,000 inpatients acquired SARS-CoV-2 in hospitals (1% to 2% of all hospital admissions in this period). Analysis of time series data provided evidence that patients who themselves acquired SARS-CoV-2 infection in hospital were the main sources of transmission to other patients. Increased transmission to inpatients was associated with hospitals having fewer single rooms and lower heated volume per bed. Moreover, we show that reducing hospital transmission could substantially enhance the efficiency of punctuated lockdown measures in suppressing community transmission. These findings reveal the previously unrecognised scale of hospital transmission, have direct implications for targeting of hospital control measures, and highlight the need to design hospitals better-equipped to limit the transmission of future high consequence pathogens

    GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19

    Get PDF
    Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A)

    Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses

    Get PDF
    The role of immune responses to previously seen endemic coronavirus epitopes in severe acute respiratory coronavirus 2 (SARS-CoV-2) infection and disease progression has not yet been determined. Here, we show that a key characteristic of fatal coronavirus disease (COVID-19) outcomes is that the immune response to the SARS-CoV-2 spike protein is enriched for antibodies directed against epitopes shared with endemic beta-coronaviruses, and has a lower proportion of antibodies targeting the more protective variable regions of the spike. The magnitude of antibody responses to the SARS-CoV-2 full-length spike protein, its domains and subunits, and the SARS-CoV-2 nucleocapsid also correlated strongly with responses to the endemic beta-coronavirus spike proteins in individuals admitted to intensive care units (ICU) with fatal COVID-19 outcomes, but not in individuals with non-fatal outcomes. This correlation was found to be due to the antibody response directed at the S2 subunit of the SARS-CoV-2 spike protein, which has the highest degree of conservation between the beta-coronavirus spike proteins. Intriguingly, antibody responses to the less cross-reactive SARS-CoV-2 nucleocapsid were not significantly different in individuals who were admitted to ICU with fatal and non-fatal outcomes, suggesting an antibody profile in individuals with fatal outcomes consistent with an original antigenic sin type-response
    corecore